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  ABSTRACT 

 
 

This paper concentrates on the dynamics, control measure and cost-

effectiveness analysis of Infectious Coryzadisease (ICD). We 

examined the boundedness of ICD model in the 
4R

. Different 

controls types used to determine the optimal level of strategy that 

decreases the spreads of the diseases as well as the cost of 

implementation of the control. Simulation of different variables of 

the model was performed to justify the analytical results and we have 

used Pontryagin’s maximum principle to derive necessary conditions 

for the optimal control of the disease. The cost-effectiveness analysis 

results show that an optimal effort on vaccination and treatment are 

the most cost-effective strategies to combat the epidemic of 

Infectious Coryza with limited resources. Therefore, ICDcan is 

controlled if the farmers will usevaccinationand treatment control 

properly. 
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1. INTRODUCTION 

Infectious Coryza (IC) is an acute respiratory disease of chickens caused by the bacterium, 

Avibacteriumparagallinarumpreviouslyknown as Haemophilusparagallinarum[1]. This 

bacterium is from the genus Haemophilus, which is a member of the family 

Pasteurellaceae[1]andaparagallinarum. It usually affects the upper respiratory tract of 
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chickens [1]. The species affected most are chickens, pheasants, and guinea fowl[2]. This 

study focuses on the dynamics of ICD in chicken because are the natural host for 

Avibacteriumparagallinarum. The disease is characterized by nasal discharge, facial 

swelling, sneezing, diarrhoea and anorexia [3], which lead to a drop in egg production, 

decreased feed and water consumption [4]. In different areas worldwide the diseases have 

been reported such as Argentina, Australia, Germany, India, Indonesia, Japan, Malaysia, 

Mexico, Morocco, Pakistan, Taiwan, Thailand and Uganda [5]. 

 Several studies were conducted to assess the distribution and prevalence of ICD in 

Tanzania. It was found that in Arusha ninety-nine of 2216 (4.4%) chickens were diagnosed 

as having died of bacterial-associated infections and their distribution is as follows: 

Omphalitis, 26 of 99(26.3%), Colibacillosis, 21 of 99(21.3%), salmonellas is, 18 of 

99(18.1%), pasteurellosis, 18 of 99(18.1%) and infectious coryza 16 of 99(16.2%). 

Despite the availability of the infectious coryza vaccine, the disease is still endemic in a 

different area of the world including developed nations[3]. Even though the government of 

Tanzania through different means has tried to emphasize on the vaccination and treatment 

of infectious coryza disease [6], the disease has continued to cause economic depression 

for both government and individuals who invest in chicken. The susceptible chicken 

population may get the infection through direct contact, airborne droplets, and through 

contaminated drinking water. The transmission among bird to bird normally occur through 

contact with contaminated drinking water [1]. 

The incubation period ranges from 1-3 days, and the disease usually ranges from 2-3 

weeks. 

One of the methods to decrease the dynamic of the disease in chicken is to keep the house 

clean, change the poultry liter, be careful add birds, use quality feed and proper spacing. 

Another remarkable measure in outbreak cases is the segregation of birds by age [5]. 

Treatment can improve the spread of the diseases but recur when medication is 

discontinued. Therefore, water medication is recommended as a form of early treatment. 

Due to this impact, this study aims at developing a mathematical model as an alternative 

approach for controlling the spread of the disease to help farmers fight against the outbreak 

of infectious coryza disease. 
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2. MATERIALS AND METHODS  

This section, we formulate a deterministic, compartmental model to describe the dynamics 

of infectious coryza disease among the free-range indigenous chickens. We assumed that 

chickens are homogeneously mixing. It further, assumed that chickens can be infected 

through direct contact with an infected chicken, and can recover through treatment 

however; they may be infected again if they come in contact with the infected chickens. 

The model is composed of four compartments namely susceptible chickens ( ),cs exposed 

chickens ( )cE , infectious chicken ( )cI , and contaminated environment ( )W . The 

susceptible class increases through recruitment rate and by recovery through treatment 

rate .   is the transmission rate from susceptible chickens to exposed chickens,   is the 

progress rate from exposed to infectious. Chicken may also get the infection through the 

contaminated environment and progress to infectious at the rate    or can progress to 

exposed chicken at a rate  while the remaining fraction of the populations moves to 

susceptible class at rate . It is assumed that chickens may die naturally at a rate  , while 

d describes the environmental intrinsic growth rate, k  is the environmental carrying 

capacity and   represents the environmental cleanliness rate. The model parameters are 

therefore summarized in Table 1. 

Table1. Parameters’ Descriptions 

 

Parameters Description 

  Treatment rate of infectious chickens 


 

Transmission rate from susceptible chicken to exposed chickens. 

d  Environmental intrinsic growth rate. 

k  The rate of dirty. 

  Rate of transmission from Contaminated environment to infectious chickens. 


 The natural death rate of chickens 

   Rate of transmission from contaminated environment to exposed chickens. 


 The progressive rate from exposure to infectious chickens 

  Chickens growth rate/recruitment rate 

  Progression of none infected chicken to susceptible class 
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Figure 1: Flow diagram of the model 

Using Figure 1, the following set of differential equations are generated: 

 

 

 

                 

                                        

            -                                     

  1      

c
c c c c

c
c c c

c
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dt
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dW W
d W W

dt k

    

   

   

   

    
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  

 
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 
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
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



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(1) 

With initial 0, 0, 0, 0c c cS E I W     

2.1. Boundedness 

The model equation (1) used to test if all state variables and parameters are non-negative 

for all 0t  . It is used to show that all state variables remain positive for all positive initial 

values.  

The boundedness of the model (1) evaluated through lemma 1. 

Lemma 1.1 

All the solution of the system (1) which starts in 4R
 is uniformly bounded. 

Proof: 

Let                                                                                                                                             
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( ) ( ) ( ) ( )c c ck t S t E t I t  
                                                                                                    (2) 

Differentiating equation (2) we get: 

( )c c c
c c c

dS dE dIdk
S E I

dt dt dt dt
     

 

   
dk

d
k

t
  

                                                                                                                               

(3) 

Solving (3) we get 

(1 )

( ) t

w
d w

kK t Ce 

 





  

 

   (4) 

Then 

 

(1 )

0 ( ) ( (0) (0) (0) (0))t t

c c c

w
d w

kk t Ce S E I W e 

 



 

  

      

  (5) 

Consequently, as t  , ( )k t    we have 

(1 )

0 ( )

w
d w

kk t

 



  

 

 (6) 

For any 0  is bounded.  This implies that all solutions of the system (1) are uniformly 

bounded in the interior of 4R
. 

2.2 Existence and uniqueness of the solution of the model 

In this subsection, we formulate the conditions for the existence and uniqueness of a 

solution for the model (1). Thus the model is presented as: 

 

 

 

0 0

0 0

0 0

  ,   S (t ) = S                

            ,  E (t ) = E                             

            - ,   I (t ) = I                          
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dt
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   
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   
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  0 0
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   
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 
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
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(7) 
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Theorem 2.1 

Let 
  0 0 0 0, . , , , , , .c c c c c cD S E I W S S b E E b I I b W W b b R         

 (8)                  

and suppose that ( , )f t x  satisfies the Lipchitz condition  

   1 2, , .t x f t x M 
 (9) 

which is defined as 

( ) ( )f x f x h
M

h

 
 , then, '( )f x M R   has a unique solution. 

 

Proof 

From equation (7) we have: 
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 

1
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           (                              
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(10) 

 

Then, need to show that equation (10) evaluated as  

, , 1, 2,3i

i

f
i j

x





 

are continuous and bounded. Then it shows that the system (7) has a unique solution. 

2.3 Application of optimal control to the ICD model 

The time-dependent control is introduced in the model (1) for the purpose of studying and 

analyzing different strategies that can be used in controlling the ICD epidemic in chicken. 

The following assumptions are used as a guideline in formulating a system of differential 

equations as an optimal control problem. It is assumed that infected chickens may be 

controlled through treatment and denoted as 3( )u t . It is also assumed that susceptible 
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populations are protected through vaccination 1( )u t . Not only but that also the disease can 

be controlled through environmental cleanliness which is denoted by 2 ( )u t .  Further, it is 

assumed that a fraction of susceptible population being infectious is  11 ( )u t , while the 

remaining population turns to a class of susceptible. The incorporated control time is 

bounded by  0,t T , where T represents the final time of the intervention program. The 

vaccination control will be evaluated at its optimal level when 1 1u  and at the minimum 

level when 1 0u  . The control associated with chickens environmental cleanliness attains 

its maximum level whenever 2 1u   and the optimal level of treatment is achieved when

3 1u  Otherwise, it is assumed that intervention is at a low or intermediate level. Hence, 

incorporating these assumptions in the model (1), we generate the following model 

equations: 
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                                              (11) 

 

 

It is assumed that the control strategies that are chicken vaccination, treatment of infected 

chickens and chicken environmental sanitation has maximum limitations in a given period 

of time. The limitations are evaluated under a Lebesgue measurable control variable 

presented as 

  1 2 3 max, , ,0 , 1,2,3 .i iu u u u u u u i    
 

This leads to the minimization of the number of the infected chicken population while 

minimizing the associated cost of interventions 1 2,u u
 and 3u

in a specified period of time. 

Thus, the optimal control problem is set to minimize the objective functional[8,9] as 
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2 2 231 2
1 2 1 2 3

0

( )
2 2 2

T

c

BB B
J u A I A W u u u dt

 
     

 


                                                  (12) 

where 0iA  represents the weight of control of the infected chickens and their 

environment, 0iB   represents the relative weight of control cost and benefit of the control 

while 
2

1 1

2

B u
 is the minimization cost of vaccination control, 

2

2 2

2

B u
 is the minimization cost 

of environment cleanliness and
2

3 3

2

B u
 is the minimization cost of treatment control.  

The aim here is to find the pair of optimal control  * * * *

1 2 3, ,u u u u  such that: 

   *

1 2 3min , ,
U

J u J u u u
                                                                                                  (13) 

The basic setup of the optimal control problem is to check the existence and uniqueness of 

the optimal controls and to characterize them[8,- 13]. 

2.4 The existence of optimal controls 

Theorem 2.2 

Given ( )J u subject to the system (12) with    (0), (0), (0), (0) 0,0,0,0c c cS E I W  then, 

there exists an optimal control 
*u and corresponding  * * * *, , ,c c cS E I W , that minimizes ( )J u

overU . The proof for a particular theory is based on assumptions presented by [14,15], 

that: 

 

The set of controls and corresponding state variables is nonempty. 

The measurable control set is convex and closed. 

Each right-hand side of the state system is continuous and bounded above by a sum of the 

bounded control and the state, it can be written as a linear function of u with coefficients 

depending on time and the state[12]. 

Suppose there exist constants 1q , 2 0q  , and 1   such that the integrant of the objective 

functional satisfies 

 2 2 2 2

1 1 2 3 2J q u u u q



   
. 
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Proof 

If U  is a nonempty set of measurable functions on 0 T and let its values be in real 

numbers  . The system (11) has bounded coefficients and therefore any solutions of the 

system are bounded on 0,T . Hence, the corresponding solutions for the system (11) exist. 

It suffices to write 1 2 3U U U U   . So that 1 2 3U U U U    is bounded and convex

 0,t T 
. 

Each right-hand side of the system (11) by definition is continuous and all variables

, , ,c c cS E I W and u are uniformly bounded on 0,T . To check for the boundedness of the 

system (11), we apply the concept of a super solution and system (11) is now expressed as: 

 3      
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c

c
c c

c
c
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dt
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dt

dI
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dt
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  
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   

 

 













                                                                       (14) 

are bounded on the finite interval. The system can be written as: 

'
3

'

'

'

ˆ0 0

ˆˆˆ 00

ˆ 00 0

00 0 0 ˆ

cc

cc c c

c c

SuS

EE I S

I I

W d W

  

  

 

     
     
           
     
                                                                      (15) 

As it can be seen the system is nonlinear infinite time with bounded coefficients and the 

super solutions of   

ˆ ˆ ˆ ˆ, , ,c c cS E I W are uniformly bounded. Since the solution to each state equation is bounded, 

then: 

 

3

ˆ0 0

ˆˆˆ 0 00
( ,  ,  ,  ,  ,  

ˆ 0 00 0

0 00 0 0 ˆ

c
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c c c c

c

S u

EI S
f t S E I W u I

I

d W
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 

      
      
              
      
                            (16) 
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1 3 2ck X I u k  
 

where  X= ,  ,  ,  c c cS E I W , 1 k depends on the coefficient of the system. Thus, the 

assumption holds. 

 

Let f be the integrant of the objective functional (12)which is articulated as 

 

2 2 231 2
1 2 1 2 3

2 2 2
c

BB B
f A I A W u u u    

 

Then, f  can be expressed inequality as 

 2 2 21
1 2 3 2

2

q
f u u u q   

 

Where  1 1 2 3min , ,q B B B , 2   and 2 0q  . Thus, the assumption holds. Therefore 

optimal control u  exists.  

2.6 Characterization of the optimal controls 

The study applies the optimal controls that rely on Pontryagin’s maximum principle as 

presented by [14] and applied by many other authors. To use this theory, we convert the 

optimal control problem (11) and objective functional (12) into a problem of minimizing 

point-wise a Hamiltonian (H), with respect to ( )u t . The Hamiltonian equation is formed as: 

 

 

    
 
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32 2 2

2 1 1 1 2 2 3 3 1

2 1 3

3

4 2
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2 2 2 1 1

       1  

       1

c

c

c c c

c

c c c

c

u I W
H A W A I B u B u B u L

u S I S

W E
L u S I W E L

u I

W
L d W u W

k
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 

 
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 
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    
       

    

   
      

   

  
       

                    (17) 

The optimal control and its corresponding state variable are on an optimal couple that 

satisfies the adjoint equation, optimality and transversality conditions with the adjoint 

vector 

 1 1 3 4, , ,L L L L L
.  

That is  
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Theorem 2.3 

Given an optimal control 
*u and solution of the corresponding state *X , then, there exists 

an adjoint vector L which satisfies the following: 
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Transversality condition ( ) 0iL T  , then optimality condition satisfies given by  
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                                                       (20) 

Proof:  

The adjoint equations (19) obtained by differentiating Hamiltonian function (17) with 

respect to  X= ,  ,  ,  c c cS E I W  and is defined as  

 , ,H X u LdL

dt X


 

 .  

Let the final states  ( ),  ( ),  ( ),  ( )c c cS T E T I T W T be free and this will lead transversality 

condition ( ) 0L T  . For the case of optimality condition, we use the differentiate the 

Hamiltonian function  
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With respect to iu  as: 
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We also check the concavity conditions of the objective function through 

2

2
0

H

u




 ,  

the second derivative of a Hamiltonian function is  

12

22

3

0

0 0

0

0

0

B
H

B
u

B

 
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  
  

                                                                                 (22) 

Since the weight of the control 0iB  , then the matrix (22) is positive and therefore the 

optimal control is minimized.  

3.0 RESULTS AND DISCUSSION 

Solving model (11)  and its corresponding adjoint equations (19) with optimality condition 

that is manipulated as 
*u in terms of costate variables form the boundary value problem 

which can be solved by many numerical methods such as Runge-Kutta, adaptive scheme, 

shooting method to list but few. In this paper, the Runge-Kutta method using MATLAB 

program is used to solve four-state equations and four adjoint equations. The optimal 

control problem (11) solved by a forward method with the initial guess values and then 

transversality conditions are used as initial values. For the case of adjoint equations (19), 

the backward approach is used in solving the current iterations solution of the state system.  

The controls are, therefore, updated by using a convex combination of the previous 

controls. The convergence criteria are evaluated with negligibly small error evaluated with  
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Where is acceptance tolerance. 

3.1 Numerical Simulations 

This section presents, numerical simulations of the system (11) by analyzing different 

control strategies to combat the ICD in chickens. The optimal control strategies are 

formulated and presented as follows:  

Strategy A: control with chicken vaccination and environmental cleanliness  1 2,u u  

The results show the positive impact of reducing the spread of disease to the system with 

chicken vaccination and environmental cleanliness as shown in Figure 2(a-b). The 

susceptible chicken tends to increase whenever vaccination and environmental control 

strategy are applied and also it is observed that exposed chickens to ICD decrease as the 

impact of control is as shown in Figure 2(c). The control profile suggests that the control 

1u
is at the upper bound for the approximation of six days before dropping gradually to the 

lower bound while control 2u
is at the upper bound for about one month before dropping to 

the lower bound (see Figure 2(d) 
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Figure 2: Application of Chicken Vaccination and environmental cleanliness to the chicken 

population; with parameter values in Table 2. 

Strategy B: Control with environmental cleanliness and infected chicken treatment

 2 3,u u
 

When 2u  and 3u  are applied to the system and 1u maintained at zero, the results show that 

susceptible chickens increase and infected chickens decrease as shown in Figure3 (a) and 

Figure 3 (c). It is also observed that when control is applied to the exposed chickens, it 

reduces the number of chickens to be affected by ICD. The control profile suggests that the 

control 2u is at the upper bound for one month before it drops to the lower bound. While 

the control 3u  to be at the upper bound for just twenty-four days before dropping to the 

lower bound. This result shows that the treatment control strategy is not effective when 

applied to chickens before susceptible among them are vaccinated. 
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Figure 3: Variation of the chicken population as the impact of environmental cleanliness 

and 

infected chicken treatment  2 3,u u , with parameter values in Table 2. 

Strategy C: Control with chicken vaccination and treatment  1 3,u u  

When  1u  and 3u  are applied to the system and 2u  is set to zero the results show that 

susceptible chickens increase and infected chicken decrease as shown in Figure4(c). It is 

also observed that without control, exposed chickens increase and when control is applied, 

reduce the number of chicken affected by ICD. The control profile shows the control 1u is 

at the upper bound for three days before dropping to the lower bound while the control 3u
 

to be at the upper bound for just twenty-four days before dropping gradually to the lower 

bound. The result shows that the treatment control strategy is more effective when applied 

after vaccination of the susceptible chickens. 
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Figure 4: Variation of the chicken population as the impact of chicken vaccination and 

treatment  1 3,u u , with parameter values in Table 2 

Strategy D: control with chicken vaccination, environmental cleanliness and 

treatment
 1 2 3, ,u u u

 

The results show the positive impact of reducing the spread of disease to the system with 

chicken vaccination, environmental dirtiness and treatment as shown in Figure 5, 

Susceptible chickens increase when the control is applied and also when control is applied 

the number of exposed chickens to ICD decreases. However, infected chickens decrease to 
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bound as well as control 2u to be at the upper bound for one month and 3u for twenty-four 

days before dropping to the lower bound. 

 

Figure 5: Variation of the chicken population as the impact of chicken vaccination, 

environmental cleanliness and infected treatment  1 2 3, ,u u u , with parameter values in 

Table. 
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The total control costs 2

1 1Bu , 2

2 2B u  and 2

3 3B u were iB  for 1, 2,3i  is relative cost weight for 

each control measure.  

Table 2: control strategies with the cost 

Strategies Averted species 
Control costs

 $
 Total costs J

 $
 

Strategy  A( 1 2 30, 0, 0u u u  
) 234 0.2753 167.2676 

Strategy  B( 1 3 20, 0, 0u u u  
) 289 0.2159 173.4895 

Strategy  C( 2 3 10, 0, 0u u u  
) 63 0.4397 163.0295 

Strategy D( 1 2 30, 0, 0u u u  
) 288 0.4634 163.0264 

 

The numerical outputs for the control strategies in Table 2 are ranked in increasing order of 

effectiveness in the form of infection averted as presented in Table 3. 

Table 3: control strategies in order of increasing averted 

Strategies Total infections averted Control costs  $  Total costs J  $  

Strategy  C 63 0.4397 163.0295 

Strategy  A 234 0.2753 167.2676 

Strategy  D 288 0.4634 163.0295 

Strategy B 289 0.2159 173.4895 

 

We calculate and compare the cost-effectiveness ratio (ICER) for strategy C and A as 

shown in Table 4. 

Table 4: Total infections averted, total cost and ICER. 

Strategies Total infections averted 
Total costs  $  

ICER 

Strategy  C 63 0.4397 0.0069793651 

Strategy  A 234 0.2753 -0.000961403 

The ICER is calculated as follows; 

       

       

Difference in costs in strategies i and j
ICER

Difference in infected averted instrategies i and j

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0.4397
( ) 0.0069793651

63
ICER C  

 

0.2753 0.4397
( ) 0.0009614035

234 63
ICER A


  

  

The comparison between strategies C and A in Table 4 shows the cost of savings-

0.0009614035 for 

Strategy A over strategy C.  The high ICER for strategy C indicates that strategy C 

is costlier and less effective than strategy A. Therefore, strategy C is excluded from the 

set of alternatives so it does not consume limited resources. 

 

Table 5: Total infection averted, total cost and ICER. 

Strategies Total infections averted 
Total costs  $  

ICER 

Strategy  A 234 0.2753 0.023 

Strategy  D 288 0.4634 0.003483 

The ICER is calculated as follows; 

0.2753
( ) 0.023

12.0399
ICER A  

  

0.4634 0.2753
( ) 0.003483

288 234
ICER D


 

  

From Table 5, we compare the strategy A and D, the results shows a cost of savings 

0.003483 for Strategy D over strategy A, Similarly, the high ICER for strategy A indicates 

that strategy A is costlier and less effective than strategy D. Therefore, strategy A is 

excluded from the set of alternatives so it does not consume limited resources. 

Table 6: Total infection averted, total cost and ICER. 

Strategies Total infections averted 
Total costs  $  

ICER 

Strategy  D 288 0.4634    0.0016 

Strategy  B 289 0.2159 -0.2475 

The ICER is calculated as follows; 

0.4634
( ) 0.0016090278

288
ICER D  

  

0.2159 0.4634
( ) 0.2475

289 288
ICER B


  

  
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The comparison between strategies D and B in Table 6 shows a cost savings of -0.2475 for 

strategy B over strategy D. The lower ICER for Strategy B indicates that Strategy B is 

strongly dominated. That is, Strategy D is costlier and less effective than Strategy B. 

Strategy D has to be excluded from the set of alternatives since it consumes limited 

resources. Fromthe results presented, we conclude that strategy B is the control with 

chicken vaccination and treatment has the least ICER and therefore is the more cost-

effective strategy. 

4. CONCLUSION 

In this paper, we have developed a deterministic model for the transmission of the ICD and 

three control strategies have been investigated. In this process, we have designed an 

optimal control problem that minimizes the cost for implementation of the controls of the 

disease while also minimizing the total number of infected chickens. First, we have 

demonstrated that optimal control exists and that it can be applied in terms of the solution 

to the optimality system. The Pontryagin’s maximum principle has been used in deriving 

and analyzing the conditions for optimal control of the ICD with control strategies such as 

vaccination 1u
, environmental cleanliness 2u

and treatment of infected chickens 3u
that 

minimize the spread of the disease. The numerical analysis shows that each strategy has 

the potential to control the transmission of the disease. However, numerical results show 

that susceptible chicken increases while the infected chickens decrease whenever the 

control is applied.  The findings from the optimal control suggest that the disease may be 

eradicated from farmers by using vaccination and treatment control which have been found 

to be the most cost-effective. However, each control strategy presented in this paper 

definitely reduces the number of infected chickens. Therefore, we advise the community to 

use vaccination and treatment control which are the cost-effective optimal control 

strategies and are sufficient to combat the epidemic of ICD with limited resources. 
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